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WEAK APPROXIMATION PROPERTIES OF ELLIPTIC PROJECTIONS
WITH FUNCTIONAL CONSTRAINTS

ROBERT SCHEICHL, PANAYOT S. VASSILEVSKI, AND LUDMIL T. ZIKATANOV

Abstract. This paper is on the construction of energy minimizing coarse spaces that obey
certain functional constraints and can thus be used for example to build robust coarse spaces
for elliptic problems with large variations in the coefficients. In practice they are built by
patching together solutions to appropriate local saddle point or eigenvalue problems. We
develop an abstract framework for such constructions, and then apply it in the design of
coarse spaces for discretizations of PDEs with highly varying coefficients. The stability and
approximation bounds of the constructed interpolant are in the weighted L2 norm and are
independent of the variations in the coefficients. Such spaces can be used for example in two
level overlapping Schwarz algorithms for elliptic PDEs with large coefficient jumps generally
not resolved by a standard coarse grid, or for numerical upscaling purposes. Some numerical
illustration is provided.

1. Introduction

This paper is on the construction of energy minimizing coarse spaces that obey certain
functional constraints and stable interpolation operators on those spaces. The specific ap-
plication we have in mind are discretizations of scalar elliptic partial differential equations
with large variations in the coefficients. The proposed technique can be used for example to
design a uniformly convergent two–level Schwarz preconditioner.

Earlier works on the subject are usually under the assumption that the discontinuities
are resolved by a coarsest grid. Under such condition, for the AMLI (Algebraic Multi Level
Iteration) method proposed in [28], but in the traditional MG setting (for details, see [29,
Section 5.6]) uniform condition number bounds can be shown for problems in two and three
spatial dimensions with respect to both the coefficient variation and the mesh size. More
recent works on nearly optimal estimates for multigrid preconditioners under the assumption
of resolving the coefficient discontinuities are also found in [31, 34]. Theoretical results on
the convergence of the overlapping Schwarz method in the case of resolved coefficients are
found in the survey article [6] and in the monograph [26]. Under the additional assumption
that the coefficient is quasi-monotone, bounds on the convergence rate of the overlapping
Schwarz method are given in [11]. As shown in earlier works, if the quasi-monotonicity
assumption on the coefficient is omitted, one needs to use carefully designed coarse spaces
(a.k.a. “exotic” coarse spaces, see e.g. [11, 23]).

There are two important issues that we address in this paper. Firstly, an important
feature of the methods that we propose is that there is no requirement to align a coarse
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grid with the discontinuities in the PDE coefficient. There has been some recent activity in
the analysis of existing methods and in the design of new methods in this context (see e.g.
[17, 24, 15, 10, 12, 13, 27, 14, 25], as well as [29] and the references therein, in the context of
Algebraic Multigrid). Of course, there are restrictions in the sense that our algorithm may
result in a coarse space of high dimension if the number of discontinuities in the coefficient
is large. It should be noted however, that we do not require quasi-monotone coefficient
distribution and in fact the resulting two level Schwarz method will be uniformly convergent
under very general assumptions on the coefficient behavior. The key ingredient, which makes
this possible is a construction of bases that preserve averages of the interpolated functions
over prescribed regions.

Secondly, we have set up a framework, that allows us to handle in a unified fashion not
only this type of functional constraints (preserving the averages), but also other types of
functional constraints (see e.g., [30]). For example, coarse spaces that can be built up by
preserving local eigenvectors, a technique recently proposed in [15, 13] are easily analyzed in
a analogous fashion using our framework (cf. [5, 7] for earlier work in this direction). The
abstract framework can also be applied to systems of PDEs (e.g. linear elasticity with large
variations in material coefficients), but this would go beyond the scope of this paper.

The rest of the paper is organized as follows. We begin with some preliminaries in §2,
mainly to set up the specific application we would like the reader to bear in mind, i.e. robust
coarse spaces for two-level Schwarz methods for elliptic PDEs. In particular, we show which
theoretical tools are needed to guarantee uniform convergence. We then prove, in §3, a
fundamental approximation and stability result formulated in an abstract setting. In §4 we
apply our abstract approximation result to 2nd–order elliptic problems with highly varying
coefficients and design two types of coarse spaces with the desired local weak approximation
and stability properties. In §5, we use a partition of unity to patch together the local coarse
spaces and obtain a global coarse space with the same weak approximation and stability
properties. Ways to reduce the dimension of the constructed coarse spaces by using new
weighted Poincaré inequalities proved in [22, 21], which apply for locally quasi–monotone
coefficients, are briefly discussed in §6. We conclude in §7 with some numerical results.

2. Preliminaries and notation

2.1. Model problem and discretization. We consider the variational formulation of a
second order, elliptic boundary value problem with Dirichlet boundary conditions: Find
u∗ ∈ H1

0 (Ω), for a given polygonal (polyhedral) domain Ω ⊂ IRd (d = 2 or 3) and a source
term f ∈ L2(Ω), such that

(2.1)

∫

Ω

α(x) ∇u∗ · ∇v
︸ ︷︷ ︸

≡ a(u∗, v)

=

∫

Ω

f(x)v(x)

︸ ︷︷ ︸
≡ (f, v)

, for all v ∈ H1
0 (Ω).

We are interested in the case when the diffusion coefficient α = α(x) is a piecewise constant
function, that may have large variations within Ω. We thus assume that Ω̄ = ∪m

l=1Ȳl, with
polygonal (polyhedral) subdomains Yl, and that α(x) = αl, for all x ∈ Yl and l = 1, . . . ,m.

For any domain D ⊂ Ω we have the following energy norm

(2.2) ‖v‖2
a,D =

∫

D

α(x)|∇v|2 =
m∑

l=1

αl

∫

D∩Yl

|∇v|2.
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We note that if v ∈ H1
0 (D) this is indeed a norm, and for v ∈ H1(D) this is only a seminorm.

We denote the seminorm by | · |a,D. We also need the weighted L2 norm

(2.3) ‖v‖2
0,α,D =

∫

D

α(x)v2 =
m∑

l=1

αl

∫

D∩Yl

v2

When D = Ω we omit the domain from the subscript and write ‖ · ‖a and ‖ · ‖0,α instead of
‖ · ‖a,Ω and ‖ · ‖0,α,Ω , respectively. In addition, we also need the usual unweighted norms,
which in standard notation we denote by

‖v‖2
L2(D) =

∫

D

v2, |v|2H1(D) =

∫

D

|∇v|2, ‖v‖2
H1(D) = ‖v‖2

L2(D) + |v|2H1(D).

The corresponding inner products are denoted in the same way, e.g.

(v, w)L2(D) =

∫

D

vw or (v, w)0,α,D =

∫

D

α(x)vw.

We consider a discretization of the variational problem (2.1) with piecewise linear contin-
uous finite elements. To define the finite element spaces and the approximate solution, we
assume that we have a locally quasi–uniform, simplicial triangulation Th of Ω. We assume
that this triangulation also resolves Yl, namely, for l = 1, . . . ,m we have:

(2.4) Ω̄ = ∪τ∈Th
τ, Ȳl = ∪τ∈TY,l

τ,

where TY,l ⊂ Th, for l = 1, . . . ,m. The standard space of piecewise linear (w.r.t Th) and
continuous functions is denoted with Vh. The space of functions from Vh that vanish on the
boundary of Ω is denoted with Vh,0.

Another notation that we frequently use is for functions in Vh restricted to a subdomain
D ⊂ Ω that is resolved by Th. The space of restrictions of the functions from Vh on D is
denoted by Vh(D). The space of functions from Vh, which are supported in D̄ is denoted
with Vh,0(D). Thus, Vh(D) ⊂ H1(D) and Vh,0(D) ⊂ H1

0 (D) and we also frequently use the
standard nodal value interpolation operators Ih : C(D̄) 7→ Vh(D).

To finish this section let us write down the discrete problem that we want to solve: Find
u ∈ Vh,0 such that

(2.5) a(u, v) = (f, v), for all v ∈ Vh,0.

2.2. Partition of unity. In order to construct coarse spaces of practical interest we require
some form of sparsity or localization. We will achieve this via partitions of unity subordinate
to suitable overlapping partitions of the domain. We will construct a particular partition
of unity whose elements are in Vh. The overlapping partition of the domain then simply
consists of the interiors of the supports of the constructed partition of unity.

Consider a coarse quasi-uniform, simplicial triangulation TH , with characteristic mesh
size H that covers Ω. We assume that the triangulation TH covers Ω exactly, although all
the results below extend to the case when Ω ⊂ ∪τ∈TH

τ with a strict inclusion. We do not
require that TH is in any way aligned with Th (except on the boundary of Ω), neither do
we assume that Th is a refinement of TH (although it could be). A natural partition of
unity is provided by the canonical (nodal) basis functions for the piecewise linear (w.r.t. TH)
continuous finite element space VH . Let us denote these functions with {χH

i }J
i=1 and assume
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that they are ordered such that {χH
i }J0

i=1 with J0 < J is the canonical basis for VH,0. We
then define

(2.6) χi := Ih(χ
H
i ), and Ωi := interior (supp(χi))

It is evident that for the domains Ωi constructed in this way, there exists a fixed number N0

such that for all i = 1, . . . , J , we have

(2.7) |N(i)| ≤ N0 where N(i) := {j | Ωj ∩ Ωi 6= ∅}.
If Th was a refinement of TH , then such a statement is clearly true, because we have that
χi = χH

i and TH was assumed to be quasi-uniform. In the case when Th is not a refinement
of TH the inequality in (2.7) is also easy to verify (see e.g. [26] for details). Our particular
partition of unity {χi}J

i=1 has the following properties.

Lemma 2.1. For {χi}J
i=1 and {Ωi}J

i=1 as defined above, we have

J∑

i=1

χi(x) = 1 and Ω̄ =
J⋃

i=1

Ω̄i.

In addition, the following inequalities hold for i = 1, . . . , J ,

0 ≤ χi ≤ 1, and |∇χi| . H−1
i , where Hi := diam(Ωi) h H.

Proof. We only prove the estimate on the gradient. All the other properties listed in the
statement of the proposition are more or less obvious (they follow from similar properties of
the functions {χH

i }J
i=1).

To bound the norm of the gradient, we commute the gradient with the nodal interpolation
operator to obtain that

(2.8) ∇Ih(χH
i ) = IN (∇χH

i ).

Here IN is the canonical interpolation from the lowest order Nédélec space on Th. We refer
to [18, Theorem 3.1] for a proof of the commuting property (2.8) in the case of piecewise
linear functions.

The degrees of freedom in the lowest order Nédélec space (associated with the edges E
of Th) are 1

|E|

∫
E
∇χH

i · τE, which is clearly bounded by ‖∇χH
i ‖∞. On the other hand,

the Nédélec basis functions (dual to the degrees of freedom) have a constant L∞-norm
(independent of the mesh size) and so

‖∇χi‖∞ = ‖IN (∇χH
i )‖∞ . ‖∇χH

i ‖∞ . H−1
i

since TH was assumed to be quasi-uniform. �

We now state the assumptions that link the distribution of the values of the coefficient
α(x) of the PDE and the domain partitioning that we just introduced.

For a given i ∈ {1, . . . , J} let

M(i) := {j ∈ {1, . . . ,m}|Ωi ∩ Yj 6= ∅}
and define Dil := Ωi ∩ Yl, for all l ∈M(i). From the definition of Dil it follows that

(2.9) Ω̄i =
⋃

l∈M(i)
D̄il.

Indeed,
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⋃

l∈M(i)

D̄il =
⋃

l∈M(i)

(
Ω̄i ∩ Ȳl

)
= Ω̄i ∩

( ⋃

l∈M(i)

Ȳl

)
= Ω̄i ∩

( m⋃

l=1

Ȳl

)
= Ω̄i ∩ Ω̄ = Ω̄i.

We make the following assumptions on the regions Dil, i = 1, . . . , J , l ∈M(i):

C1. We assume that the cardinality of M(i) is uniformly bounded by a constant m0.

C2. We assume that Th is sufficiently fine such that Dil contains at least one vertex from
Th in its interior, for all i = 1, . . . , J and l ∈M(i).

C3. For each domain Dil, 1 ≤ i ≤ J , l ∈ M(i), we assume that the following Poincaré
inequality holds:

(2.10) inf
c∈IR

∫

Dil

(v − c)2 . |Dil|2/d

∫

Dil

|∇v|2, for all v ∈ H1(Dil).

Remark 2.2. Basically, Assumption C3 states that the Poincaré inequality (2.10) holds for
each of the domains Dil with a constant c2P (Dil) that is proportional to |Dil|2/d.

It is well known that the Poincaré constant cP (D) depends on the geometric characteristics

of the domain D. For convex domains (see e.g. [20, 1, 2]) we have cP (D) ≤ diam(D)
π

. If the
domain D is not convex, then the dependence is more intricate. Following Cheeger [8], for
the case that D is a John domain – which includes Lipschitz domains, star–shaped domains,
and domains that have the cone property – it can be shown using the Sobolev-Poincaré
inequality (see e.g. [19, 8]) that

(2.11) cP (D) ≤ 2cI(D)|D| 1

d ,

where cI(D) is the isoperimetric constant for D. It is scaling invariant and (in the case of
connected polygonal/polyhedral domains) given by

cI(D) = sup
S⊂D

min{|S|, |D\S|}(d−1)/d

|∂S| .

Thus, a sufficient condition for Assumption C3 to hold is that the isoperimetric constant
cI(Dil) for each of the domains Dil is uniformly bounded. Note that without this assumption,
in the worst case, cI(Dil) may grow like (Hi/hi)

d−1, where hi is the characteristic mesh size
of Th on Dil, e.g. if Dil is hourglass–shaped.

We will also need the following Lemma on the stability of the nodal interpolant Ih on Vh.

Lemma 2.3. Let uq be a continuous, piecewise quadratic (w.r.t. Th) function. Then

(2.12) |Ih(uq)|a . |uq|a and ‖Ih(uq)‖0,α . ‖uq‖0,α

Proof. Let τ ∈ Th and let E := (xi,xj) be the edge in τ with vertices xi and xj. Also, let
∂eu denote the directional derivative of u along E. We will provide a constructive proof of
(2.12). To achieve this we use the following identity:

[Ih(uq)](x) = uq(x) − 1

2

∑
E∈τ

|E|2∂eeuλi(x)λj(x), for all x ∈ τ,

where λi(x) and λj(x) are the barycentric coordinates corresponding to xi and xj, resp.
To show the inequalities in (2.12) we proceed as follows: we apply the inverse inequality

along each edge E, and use a well known formula for integrals of products of barycentric
coordinates to obtain

|Ih(uq)|H1(τ) . |uq|H1(τ) and ‖Ih(uq)‖L2(τ) . ‖uq‖L2(τ)
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The result follows, if we multiply each of the inequalities by α|τ and sum over all τ ∈ Th. �

2.3. Two–level multiplicative Schwarz algorithm. To motivate the remainder of the
paper, in this section we sketch the proof of a well known result on the convergence of the
multiplicative Schwarz algorithm and highlight the key theoretical requirement on the coarse
space that is needed to have a complete proof of uniform convergence, with rate independent
of the coefficient variation.

Let Vi = Vh,0(Ωi), i = 1, . . . J, and let V0 be a “coarse” subspace of Vh,0(Ω) (unspecified
for now). We denote with Pk the elliptic projection on Vk, defined as

a(Pkv, wk) = a(v, wk), for all wk ∈ Vk, k = 0, . . . , J.

For a given f ∈ L2(Ω), the action B−1
MSf of the two–level multiplicative Schwarz precondi-

tioner B−1
MS : Vh,0 7→ Vh,0 is obtained as follows

Algorithm 2.4 (Multiplicative Schwarz preconditioner).
Let f ∈ L2(Ω) be given. Set u−J−1 = 0.

for k = −J : J

Let ek ∈ V|k| be the solution of

a(ek, vk) = (f, vk) − a(uk−1, vk), for all vk ∈ V|k| .

Define uk := uk−1 + ek .

endfor

Set B−1
MSf = uJ .

Since we consider here the multiplicative method, which is a convergent method, it is clear
that a(v, v) ≤ (BMSv, v). Henceforth, to estimate the convergence rate (or the condition
number of the preconditioned system) we need an estimate of the form (BMSv, v) . a(v, v).
The following theorem is a classical result (see e.g. [32, 26, 29]).

Theorem 2.5. Let us assume that for all v ∈ Vh,0(Ω), there exists v0 ∈ V0 such that

(2.13) ‖v0‖a . ‖v‖a and ‖v − v0‖0,α . H2‖v‖a .

Then, (BMSv, v) . a(v, v). The hidden constant depends on N0 and the constants in (2.13).

Proof. We give a sketch of the proof to show that it is a direct consequence of (2.13). Note
that (BMSv, v) can be written as follows (see [29] or [9, Lemma 3.4]):

(2.14) (BMSv, v) = inf
P

vi=v

J∑

k=0

∥∥∥∥Pk

J∑

j=k

vj

∥∥∥∥
2

a

.

This is sometimes referred to as the “XZ-identity” [32]. We now choose in particular the

functions vi = Ih(χi(v − v0)), for i = 1, . . . , J , and so v =
∑J

i=0 vi. Setting w = (v − v0), it
follows from (2.14) (by expanding the right hand side) that

(BMSv, v) ≤ ‖v‖2
a +

J−1∑

k=0

∥∥∥∥Pk

J∑

j=k+1

vj

∥∥∥∥
2

a

≤ ‖v‖2
a + ‖w‖2

a +
J−1∑

k=1

∥∥∥∥
J∑

j=k+1

χjw

∥∥∥∥
2

a,Ωk

,

where in the last step we used Lemma 2.3 and the fact that ‖Pk‖a = 1, for all k = 0, . . . , J .
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Since χjw|Ωk
6= 0 for at most N0 values of j for each k, it follows from Lemma 2.1 and the

triangle inequality that

(BMSv, v) . ‖v‖2
a + ‖w‖2

a +
J∑

k=1

‖χkw‖2
a

. ‖v‖2
a + ‖v − v0‖2

a +
J∑

k=1

‖χk‖∞‖w‖2
a,Ωk

+ ‖∇χk‖∞‖w‖2
0,α,Ωk

. ‖v‖2
a + ‖v0‖2

a +H−2‖v − v0‖2
0,α ,

and so it follows directly from (2.13) that (BMSv, v) . a(v, v). �

As we can see, the key ingredient that is needed in the proof of Theorem 2.5 is a coarse
space which has certain approximation and stability properties that hold regardless of the
size of the coefficient variations. In §4 we will give a recipe to construct such coarse spaces
based on energy minimization with constraints. The framework for these spaces is rather
general and so we will first, in §3, prove an abstract approximation result. Concrete examples
that fit into this general framework, based on solving local saddle point problems or local
eigenvalue problems, are then discussed in §4.1 and in § 4.2, respectively.

3. An abstract approximation result

We consider the following variational problem: Find u ∈ V such that

(3.1) a(u, v) = f(v), for all v ∈ V.

Here a(·, ·) : V × V 7→ IR is a symmetric and continuous bilinear form, and f ∈ V ′ is a
continuous linear form. We make the following assumptions on V and a(·, ·):
A1. The bilinear form a(·, ·) is positive semi-definite and defines a semi-norm | · |a on V ,

i.e.
|v|2a = a(v, v) ≥ 0, for all v ∈ V.

In addition, we assume that V ⊂ H, where H is a Hilbert space with a norm ‖ · ‖,
and that for v ∈ V , the expression

√
‖v‖2 + |v|2a defines a norm on V .

A2. There exists a collection of linear functionals {fl}m
k=1 ⊂ V ′, with the following prop-

erty: For every q ∈ IRm, there exists a vq ∈ V such that

fl(vq) = ql, and ‖vq‖ . cq‖q‖l2(IRm).

A3. There are two constants ca and cf such that

(3.2) ‖v‖2 ≤ ca|v|2a + cf

m∑

l=1

|fl(v)|2 , for all v ∈ V.

We denote the subspace where {fl}m
l=1 vanish with Z. It is defined as

(3.3) Z := {v ∈ V | fl(v) = 0, l = 1, . . . ,m}
Clearly, it follows from Assumptions A1 and A3 that the following variational problem has
a unique solution: Find u0 ∈ Z, such that

a(u0, w) = g(w), for all w ∈ Z,

provided g(·) is a continuous linear form on Z.
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3.1. Stable (norm-1) projections via minimization. In this section, we define a projec-
tion on a finite dimensional subspace V0 ⊂ V , and this projection has appropriate stability
and weak approximation properties. Consider the following constrained minimization prob-
lem: Given q ∈ IRm, find u ∈ V such that

(3.4) u = arg min
v∈V

|v|2a, subject to the constraints fl(u) = ql, l = 1, . . . ,m.

The following lemma summarizes some of the properties of the minimizer u.

Lemma 3.1. Assume that A1–A3 are satisfied. Then the minimization problem (3.4) has
a unique solution u. Moreover,

(3.5) a(u,w) = 0, for all w ∈ Z.

Proof. By Assumption A2 there exists u1 such that fl(u1) = ql, for l = 1, . . . ,m. Let u0 be
the unique element of Z such that

(3.6) a(u0, w) = −a(u1, w), for all w ∈ Z.

Note that the definition of u0 implies that equation (3.5) is satisfied for u = u0 + u1. We
aim to show now that u = u0 + u1 is also a minimizer of (3.4). We have

a(u, u) = a(u0 + u1, u0) + a(u0 + u1, u1)

= a(u0, u1) + a(u1, u1) = a(u1, u1) − a(u0, u0) ≤ a(u1, u1),

where we have used (3.5) to conclude a(u0 + u1, u0) = 0. Since u1 was arbitrary element
of V satisfying the constraints, we may conclude that u is a minimizer.

To prove uniqueness, let v1 ∈ V be another element of V that satisfies the same constraints,
that is, fl(v1) = ql, and let v0 be the solution to

a(v0, w) = −a(v1, w), for all w ∈ Z.

We would like to show that u1 + u0 = v1 + v0, which will imply that the solution is unique.
Indeed, from the equations for u0 and v0 we get that

a(u0 − v0, w) = −a(u1 − v1, w), for all w ∈ Z,

Since (u0 − v0) ∈ Z, (u1 − v1) ∈ Z and a(·, ·) is positive definite on Z, it follows that
u0 − v0 = −(u1 − v1), which is another way to say that u1 + u0 = v1 + v0. �

Consider now m such minimization problems, whose solutions we denote with {Φl}m
l=1,

such that

(3.7) Φl = arg min
v∈V

|v|2a, subject to fj(Φl) = δjl l = 1, . . . ,m.

From Lemma 3.1 it follows that each of the minimization problems in (3.7) is uniquely
solvable. We now define V0 = span{Φl}m

l=1, which is clearly a finite dimensional space with
dimV0 ≤ m, as well as the projection Π : V 7→ V0, which for a given v ∈ V is

(3.8) Πv =
m∑

l=1

fl(v)Φl.

The following lemma shows that Πv also solves a minimization problem similar to (3.4).
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Lemma 3.2. For a given u ∈ V , let ũ be the solution to the following minimization problem.

(3.9) ũ = arg min
v∈V

|v|2a, subject to fl(ũ) = fl(u) l = 1, . . . ,m.

Then ũ = Πu, and so Πu defined in (3.8) is the unique minimizer in (3.9).

Proof. To check that Πu as defined in (3.8) satisfies the constraints is straightforward. We
now set ũ1 = Πu =

∑m
l=1 fl(u)Φl, and proceeding as in the proof of Lemma 3.1 we have that

ũ = ũ0 + ũ1, where ũ0 ∈ Z solves

(3.10) a(ũ0, w) = −a(ũ1, w), for all w ∈ Z.

To finish the proof, we need to show that ũ0 = 0. Substituting the expansion of ũ1 we have

(3.11) a(ũ1, w) =
m∑

l=1

fl(u)a(Φl, w), for all w ∈ Z.

Since (3.5) implies a(Φl, w) = 0, for all w ∈ Z and l = 1, . . . ,m, the right hand side of (3.11)
is equal to zero. Thus, it follows from (3.10) that ũ0 = 0, since a(·, ·) is invertible on Z,
which completes the proof. �

We now state and prove the stability and approximation properties of the projection Π.

Theorem 3.3. The following inequalities hold true for all u ∈ V :

(3.12) |Πu|a ≤ |u|a, (stability estimate),

(3.13) ‖u− Πu‖ ≤ √
ca|u|a, (weak approximation property).

(Note that these results do not depend on the size of the constants cq and cf in A2 and A3.)

Proof. The first inequality is obvious, because as we have shown in Lemma 3.2, Πu is the
minimizer in (3.9) and then by construction, the inequality (3.12) holds.

The weak approximation property (3.13) is obtained in a straightforward fashion by first
using Assumption A3, then using the fact that (v−Πv) ∈ Z, and applying (3.12). We have,

‖v − Πv‖2 ≤ ca|v − Πv|2a + cf

m∑

l=1

|f(v − Πv)|2

= ca|v − Πv|2a ≤ ca ‖I − Π‖ |v|2a = ca|v|2a .
In the last line we used a result of Kato (cf., e.g., [29]), i.e., that ||I−Π|| = ||Π‖ which holds
for any nontrivial projection Π and any inner-product norm ‖.‖. �

Remark 3.4. We would like to point out here a relation between Assumption A3 above
and a classical approximation result, known as Bramble–Hilbert Lemma [3, 4]. To show this,
let us introduce the standard norm ‖u‖m,p,D and seminorms |u|k,p,D, k = 0, . . . ,m on the
Sobolev space Wm,p(D) on a domain D, i.e.

‖u‖p
m,p,D =

m∑

k=0

|u|pk,p,D, and |u|pk,p,D =
∑

|β|=k

∫

D

∣∣∣∣
∂βu

∂xβ

∣∣∣∣
p

,

Here the domain D has to satisfy some smoothness conditions, and to fix this, let us say
that D is a union of domains star-shaped with respect to a ball.

If in Assumption A3 we set: (a) |u|a = |u|m,p,D and ‖u‖ = ‖u‖m,p,D; (b) fl(·) to be the
Hahn-Banach extensions on Wm,p(D) of the dual basis for the space Pm−1 (polynomials of
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degree less than or equal to (m − 1)), with duality pairing given by the standard L2(D)
inner product; and (c) set H = V = Wm,p(D). Then the inequality (3.2) in Assumption A3
implies the Bramble-Hilbert Lemma. Indeed, taking qu ∈ Pm−1 to be the polynomial for
which fl(u− qu) = 0, for l = 1, . . . ,m and applying (3.2) to (u− qu) gives

inf
q∈Pm−1

‖u− q‖m,p,Ω ≤ ‖u− qu‖m,p,Ω ≤ ca|u− qu|m,p,Ω = ca|u|m,p,Ω.

This latter estimate is found in [3, Theorem 1] and [4, Theorem 1] and is referred to as the
Bramble-Hilbert Lemma.

4. Local coarse space construction

We now use the abstract framework developed in §3 to construct coarse spaces of dimension
≤ m for the particular problem (2.5) with the stability and approximation properties needed
in Theorem 2.5, i.e. satisfying (2.13).

The constructions and estimates from this section are applied locally to each of the sub-
domains Ωi. Clearly Assumption A1 holds on all of Ω, and thus also on each Ωi. For
certain choices of functionals fl(·) we prove now that Assumptions C1–C3 (in §2.2) imply
Assumptions A2 and A3.

To avoid a proliferation of indices in this section, let i ∈ {1, . . . , J} be fixed and set
Dl := Dil and M = |M(i)|. Thus, in particular, the relation (2.9) takes the form

(4.1) Ω̄i = ∪m
l=1D̄l.

Also, let H := L2(Ωi) and ‖v‖ := ‖v‖0,α,Ωi
in §3.

4.1. Local coarse space construction via local saddle point problems. Suppose that
on the domain Ωi the functionals fl(·), l = 1, . . . ,M , are defined as

(4.2) fl(v) :=
1

|Dl|

∫

Dl

v.

To apply the abstract theory in §3 we now verify in turn Assumptions A2 and A3.

Lemma 4.1. Let fl(·) be defined as in (4.2). Then Assumption A2 holds true.

Proof. Let l ∈ {1, . . . ,M} be fixed. We first show that there exists a function ψl ∈ Vh,0(Dl)
and a constant cl such that

(4.3)

∫

Dl

ψl = |Dl| and

∫

Dl

ψ2
l ≤ cl|Dl|.

Let θ ∈ Vh,0(Dl) be such that θ(xj) = 1 for every vertex xj of Th that is interior to Dl. The
set of such vertices is denoted by I. It follows from C2 that I 6= ∅. Let Th(Dl) ⊂ Th be the
restriction of Th to Dl, and let ω0 ⊂ Dl be the union of elements τ ∈ Th(Dl) that contain at
least one interior vertex, i.e.

ω0 := ∪{τ | τ ∈ Th(Dl) and τ ∩ I 6= ∅}.
Integrating θ over Dl and using quadrature on each τ ∈ Th(Dl), we have

∫

Dl

θ =
∑

τ∈Th(Dl)

∫

τ

θ =
1

d+ 1

∑

τ∈Th(Dl)

|τ |
∑

x
τ
j ∈τ

θ(xτ
j ) =

1

d+ 1

∑

xj∈I

∑

τ :τ⊃xj

|τ | ,
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where we denoted the vertices of τ with {xτ
j}d+1

j=1. Clearly, each of the elements τ ⊂ ω0

appears at least once in the sum on the right side of the above relation and at most (d+ 1)
times (since each τ has (d+ 1) vertices). None of the elements τ ⊂ Dl\ω0 appears. Hence,

(4.4)
1

d+ 1
|ω0| =

1

d+ 1

∑

τ⊂ω0

|τ | ≤
∫

Dl

θ ≤
∑

τ⊂ω0

|τ | = |ω0|,

We now set

ψl := clθ with c−1
l :=

1

|Dl|

∫

Dl

θ

It follows from (4.4) that |Dl|
|ω0|

≤ cl ≤ (d + 1) |Dl|
|ω0|

. Thus, for each l we have defined ψl which

by construction satisfies
∫

Dl

ψl = |Dl| and

∫

Dl

ψ2
l = c2l

∫

Dl

θ2 ≤ c2l

∫

Dl

θ ≤ cl|Dl|.

Since Vh,0(Dl) ⊂ Vh(Ωi) we have that ψl ∈ Vh(Ωi).

To conclude the proof of A2, for a given q ∈ IRM we set vq =
∑M

l=1 qlψl and we obtain

‖u‖2
0,α,Ωi

=
M∑

l=1

q2
l

∫

Dl

α|ψl|2 .

M∑

l=1

αlcl|Dl|q2
l ≤ cq‖q‖2

ℓ2(IRM )
with cq :=

M
max
l=1

αlcl|Dl|.

(Recall that the constant cq which depends on α and H does not appear in the stability and
weak approximation bounds in Theorem 3.3.) �

Lemma 4.2. Let fl(·) be defined as in (4.2). Then Assumption A3 holds true with constants
ca h max1≤l≤M |Dl|2/d and cf h max1≤l≤M αl|Dl|.
Proof. Because of Assumption C3 we can apply the Poincaré inequality (2.10) on each of
the domains Dl, multiply by αl and sum over l = 1, . . . ,M to obtain,

‖u‖2
0,α,Ωi

.

M∑

l=1

|Dl|2/d

∫

Dl

α|∇u|2 +
M∑

l=1

αl|Dl||fl(u)|2

which shows that A3 holds true with

ca h max
1≤l≤M

|Dl|2/d ≤ |Ωi|2/d ≤ H2
i and cf h max

1≤l≤M
αl|Dl|.

�

Let us now show how we can use the results in §3 to construct a suitable coarse space
on each of the subdomains Ωi. We need to distinguish between subdomains Ωi, i ≤ J0,
associated with interior coarse mesh vertices, and those with i > J0, associated with coarse
vertices on the (Dirichlet) boundary ∂Ω of the global domain.

Let us first consider Ωi with i ≤ J0. Having verified A1–A3 for the functionals in (4.2),
the M functions {Φl}M

l=1 in (3.7) span a coarse space on Ωi with the desired properties. The
corresponding projection operator given in (3.8), we denote here with ΠΩi

. It follows from
Lemmas 3.1 and 3.2 that in practice, this coarse space can be constructed by solving a family
of saddle point problems on Ωi.

From the proof of Lemma 4.1, we know that there exist functions ψl such that

fj(ψl) = δjl.
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To state the relevant saddle point problems, we need the space of piecewise constant func-
tions, with respect to the partitioning of Ωi into the non-overlapping set of domains Dl. This
space we denote with W (Ωi), and define it formally as

W (Ωi) := {q ∈ L2(Ωi) |
M∑

l=1

ql1Dl
},

where 1Dl
is the characteristic function of Dl and ql ∈ IR. We also introduce the local

projection operator, Q̃ : Vh(Ωi) 7→ W (Ωi),

Q̃v =
M∑

l=1

(
1

|Dl|

∫

Dl

v

)
1Yl

The lth basis function Φl can now be computed by solving the following saddle point
problem for (Φl, s) ∈ Vh(Ωi) ×W (Ωi):

(4.5)
a(Φl, v) + (Q̃v, s)L2(Ωi) = 0, for all v ∈ Vh(Ωi),

(Q̃Φl, w)L2(Ωi) = (Q̃ψl, w)L2(Ωi), for all w ∈W (Ωi).

Note that the functions {Φl}M
l=1, constructed in this way, form a partition of unity over Ωi.

This immediately follows from the following: (1) ΠΩi
1 = 1, since the constant function

1 ∈ Vh and minimizes a(·, ·) under the constraint q = 1; and (2) Q̃(
∑M

l=1 ψl) = 1 on Ωi.
If i > J0 we have to slightly modify the saddle point problems in (4.5) in order to obtain

a global coarse space that is H1
0–conforming, i.e. V0 ⊂ Vh,0, later in §5. However, all we

need to do is to replace the pure Neumann problems in (4.5) by problems with mixed
Dirichlet/Neumann conditions by replacing

Vh(Ωi) with Vh,0,∂Ω(Ωi) := {vh ∈ Vh(Ωi) | vh = 0 on ∂Ω ∩ ∂Ωi}.

Note that in this case the functions {Φl}M
l=1 do not form a partition of unity over Ωi.

This is a fully local construction on each of the regions Ωi. For each i = 1, . . . , J , we need to
solve |M(i)| ≤ m0 of the saddle point problems (4.5), which is comparable in computational
cost to the construction of the basis functions in multiscale finite elements (see e.g. [10]).

To conclude this section, we state the following theorem, which is a direct corollary from
Theorem 3.3.

Theorem 4.3. Let u ∈ Vh(Ωi), for i ≤ J0, or let u ∈ Vh,0,∂Ω(Ωi), for i ≤ J0, be arbitrary.
Let ΠΩi

u be its projection on the span{Φl}l∈M(i) with Φl defined in (4.5), where

ΠΩi
u :=

∑

l∈M(i)

fl(u)Φl and fl(u) :=
1

|Dl|

∫

Dl

u.

Then the following estimates hold:

(4.6) |ΠΩi
u|a,Ωi

≤ |u|a,Ωi
, (stability estimate),

(4.7) ‖u− ΠΩi
u‖0,α,Ωi

. |Ωi|1/d|u|a,Ωi
, (weak approximation property).
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4.2. Local coarse space construction via local eigenvalue problems. Here we apply
the abstract framework to coarse spaces constructed via local eigensolves, as proposed in [5,
7, 15, 13] within various contexts.

Instead of M saddle point problems, we consider the solution of the following eigenvalue
problem on Ωi: Find ηl ∈ Vh(Ωi), and λl ≥ 0, such that

(4.8) a(ηl, w) = λl(αηl, w)L2(Ωi), for all w ∈ Vh(Ωi).

Let us assume that the eigenvalues λl are ordered according to their size and that the
eigenvectors are normalized such that ‖ηl‖0,α,Ωi

= 1. Then, given a constant ca > 0, we
define M here to be the largest integer such that λ−1

M+1 ≤ ca. The functionals fl(u) are
chosen to be

(4.9) fl(u) = (αηl, u)L2(Ωi), for all l ≤M.

We note that since the set of eigenvectors {ηl} forms a complete basis for Vh(Ωi), we have

(4.10) u =
∑

l
(αηl, u)L2(Ωi) ηl.

Again we need to replace Vh(Ωi) by Vh,0,∂Ω(Ωi), for i > J0.

Lemma 4.4. Let fl(·) be defined as in (4.9). Then Assumptions A2 and A3 hold true.

Proof. Assumption A2 is immediate. Given q ∈ R
M , choose vq :=

∑M
l=1 qlηl. Then

fl(vq) = (αηl, vq)L2(Ωi) = ql and ‖vq‖2
0,α,Ωi

=
M∑

l=1

q2
l ‖ηl‖0,α,Ωi

= ‖q‖2
l2(IRM )

.

Proving Assumption A3 is also straightforward. Using (4.8–4.10) and the definition of M

‖u‖2
0,α,Ωi

=
∑

l≥M

[(αηl, u)]
2 +

∑

l≤M

|(αηl, u)|2

≤
∑

l≥M

λl

λM+1

[(αηl, u)]
2 +

∑

l≤M

|fl(u)|2

≤ ca
∑

l≥1

λl[(αηl, u)]
2 +

∑

l≤M

|fl(u)|2

= ca
∑

l≥1

a(ηl, u)(αηl, u) +
∑

l≤M

|fl(u)|2 = ca|u|2a +
∑

l≤M

|fl(u)|2.

Since by assumption Ωi is shape regular, it can be shown (cf. [16, 31]) that λ−1
M+1 . |Ωi|2/d

for M ≥ |M(i)|. �

Thus we can again apply Theorem 3.3 to get stability and weak approximation in span{ηl}M
l=1.

Theorem 4.5. The results of Theorem 4.3 remain true for

ΠΩi
u :=

M∑

l=1

fl(u)ηl and fl(u) := (αηl, u)L2(Ωi)

and {ηl}M
l=1 as defined in (4.9).
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5. Global stability and interpolation estimates

Here we put together the local constructions done in the previous section and construct
a coarse space V0 ⊂ Vh,0 on all of Ω using the partition of unity defined in Section 2.2. We
concentrate only on the construction via the local saddle point problems described in §4.1.
The construction via the local eigenproblems is identical and can be found (with proof)
already in [15].

Following the construction in §4.1, for a given function u ∈ Vh,0 and a given domain Ωi,
1 ≤ i ≤ J , we consider as our functionals the averages

ūil :=
1

|Dil|

∫

Dil

u, for all l ∈M(i),

and introduce the coarse grid interpolant of u to be the function u0 defined as follows:

(5.1) u0 := Ih

(
J∑

i=1

χiΠΩi
u

)
, where ΠΩi

u :=
∑

l∈M(i)

ūilΦil ,

{χi}J
i=1 is the partition of unity defined in (2.6) in §2.2 and the sets {Φil : l ∈ M(i)}

contain the solutions to the |M(i)| saddle point problems on Ωi defined in (4.5) in §4.1. The
corresponding coarse space is

V0 := span{ΦH
il : 1 ≤ i ≤ J and l ∈M(i)}, where ΦH

il := Ih(χiΦil).

The dimension of V0 is
∑J

i=1 |M(i)|. Since by construction each of the functions Φil ∈ Vh0

and since TH is aligned with the boundary of Ω, we have V0 ⊂ Vh,0.
The following theorem shows that the interpolant u0 defined above, which is an element

of V0, satisfies the stability and approximation properties (2.13) needed in Theorem 2.5.

Theorem 5.1. Let u ∈ Vh,0 be given and let u0 ∈ V0 be the coarse grid interpolant of u,
defined in (5.1). Then the following uniform estimates hold, with constants independent of
h, H and the coefficient α(x):

|u0|2a . |u|2a, (stability estimate),(5.2)

‖u− u0‖2
0,α . H2|u|2a, (weak approximation property).(5.3)

Proof. It follows from the stability of Ih in Lemma 2.3 and the fact that u =
∑J

i=1 χiu that

‖u− u0‖2
L2(Yl)

.

∥∥∥∥u−
J∑

i=1

χiΠΩi
u

∥∥∥∥
2

L2(Yl)

=

∥∥∥∥
J∑

i=1

χi(u− ΠΩi
u)

∥∥∥∥
2

L2(Yl)

.

Now let wi := χi(u− ΠΩi
u), multiply by α and sum over l = 1, . . . ,m, to get

‖u− u0‖2
0,α .

m∑

l=1

J∑

i=1

J∑

j=1

(wi, wj)0,α,Yl
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Since wi, and wj are supported in Ωi and Ωj, respectively, changing the order of summation
and applying the Cauchy-Schwarz inequality then gives

‖u− u0‖2
0,α .

J∑

i=1

∑

j∈N(i)

∑

l∈M(i)∩M(j)

(wi, wj)0,α,Yl

.

J∑

i=1

∑

j∈N(i)

∑

l∈M(i)∩M(j)

‖wi‖0,α,Dil
‖wj‖0,α,Djl

.(5.4)

Now we observe that M(i) ∩M(j) is a subset of M(i) and of M(j), and so by applying the
Cauchy-Schwarz inequality to the innermost sum we arrive at

∑

l∈M(i)∩M(j)

‖wi‖0,α,Dil
‖wj‖0,α,Djl

≤
( ∑

l∈M(i)

‖wi‖2
0,α,Dil

)1/2( ∑

l∈M(j)

‖wj‖2
0,α,Djl

)1/2

Substituting this in (5.4) and using the fact that the cardinality of N(i) cannot exceed N0

we finally obtain

‖u− u0‖2
0,α .

J∑

i=1

∑

j∈N(i)

‖wi‖0,α,Ωi
‖wj‖0,α,Ωj

.

J∑

i=1

∑

j∈N(i)

‖wi‖2
0,α,Ωi

+ ‖wj‖2
0,α,Ωj

.

J∑

i=1

‖wi‖2
0,α,Ωi

(5.5)

Since ‖χi‖∞ . 1 by Lemma 2.1 we can now apply the weak approximation property (4.7) in
Theorem 4.3 on each of the regions Ωi to complete the proof of (5.3):

‖u− u0‖2
0,α .

J∑

i=1

‖u− ΠΩi
u‖2

0,α,Ωi
.

J∑

i=1

|Ωi|2/d‖u‖2
a,Ωi

. H2‖u‖2
a

The stability property can be proved in a similar fashion. As in (5.5) we can show that

‖u− u0‖2
a .

J∑

i=1

‖χi(u− ΠΩi
u)‖a,Ωi

.

Applying the triangle inequality and the product rule we get

‖u0‖2
a . ‖u‖2

a +
J∑

i=1

‖χi‖2
∞

(
‖u‖2

a,Ωi
+ ‖ΠΩi

u)‖2
a,Ωi

)
+ ‖∇χi‖2

∞‖u− ΠΩi
u‖2

0,α,Ωi

The stability property (5.2) then follows immediately from Lemma 2.1 and Theorem 4.3. �

Moving away from our motivating application of the new coarse spaces in the multiplicative
Schwarz method, Theorem 5.1 also shows that V0, constructed in this way, has optimal (inH)
approximation properties (independent of the coefficient variation) in the weighted L2–norm,
which may be of interest e.g. for numerical upscaling.



16 ROBERT SCHEICHL, PANAYOT S. VASSILEVSKI, AND LUDMIL T. ZIKATANOV

6. Reducing the dimension via weighted Poincaré inequalities and

non-constant coefficients

It is possible and straightforward now to considerably reduce the dimension of the coarse
space V0 constructed in the previous section, while still maintaining the stability and weak
approximation properties (5.2) and (5.3), by resorting to the weighted Poincaré inequalities
proved in [22, 21] instead of the standard Poincaré inequality. In addition this extends the
theory to general, non piecewise constant coefficients α.

For any i = 1, . . . , J , let {Dil}l∈M(i) be an arbitrary non-overlapping partitioning of Ωi

into polygonal/polyhedral domains (assumed to be resolved by Th) such that (2.9) holds and
Assumptions C1 and C2 are satisfied. Most importantly, we do not assume any longer that
the coefficient α is constant on Dil.

Note now that all the results that we proved in Sections 4.1 and 5 hold true, if we replace
Assumption C3 with the following assumption:

C3’. For each domain Dil, 1 ≤ i ≤ J , l ∈ M(i), we assume that the following weighted
Poincaré inequality holds:

(6.1) inf
c∈IR

∫

Dil

α(v − c)2 . |Dil|2/d

∫

Dil

α|∇v|2, for all v ∈ H1(Dil).

The only thing that changes are the constants cq and cf in Lemmas 4.1 and 4.2. Since the
infimum in (6.1) is attained for c∗l =

∫
Dil
αv
/ ∫

Dil
α, we get

cq = max
l∈M(i)

cl

∫

Dil

α(x) and cf = max
l∈M(i)

|Dil| max
x∈Dil

α(x)

with cl as defined in the proof of Lemma 4.1. Note that cf can be reduced to maxl∈M(i)

∫
Dil
α(x)

if the functionals fl(u) in (4.2) are replaced by the weighted averages fl(u) = c∗l , but this
has no bearing on the stability and weak approximation properties of V0.

As shown in [22, 21] the key concept for C3’ to hold with a constant that is independent of
the coefficient variation within each of the regions Dil is that α(x) is locally quasi-monotone.
To give some more details, let us fix 1 ≤ i ≤ J and l ∈ M(i) and set ω := Dil. We need to
define the following subsets of ω where α(x) is constant:

ωk = ω ∩ Yk, where k ∈ I(ω) := {k : ω ∩ Yk 6= ∅}.
Let us assume w.l.o.g. that each of these subregions is connected. The following slightly
generalizes the notion of quasi-monotonicity coined in [11]. Let G = (N , E) be a directed
combinatorial graph with N = {ωk : k ∈ I(ω)}. The edges are ordered pairs of vertices
defined as follows.

Definition 6.1. Suppose that γk,k′

= ωk ∪ ωk′

is a sufficiently regular, non-empty manifold
of dimension d− 1 such that meas(γk,k′

) h meas(ωk ∪ ωk′

)2/d. The ordered pair (ωk, ωk′

) is
an edge in E, if and only if αk . αk′.

Quasi-monotonicity is related to the connectivity in this graph. Let k∗ ∈ I(ω) be the
index of the region ωk with the largest coefficient, i.e. αk∗ = maxk∈I(ω) αk.

Definition 6.2. The coefficient α is quasi-monotone on ω = Dil, if there is a path in G
from any vertex ωk to ωk∗

.
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Figure 6.1: Example of a quasi-monotone coefficient in (a) and two typical examples of non-
quasi-monotone coefficients in (b-c). Darker colours indicate a larger coefficient. The dashed line
indicates a possible partitioning so that the coefficient is quasi–monotone in each of the subregions.

The coefficient in Figure 6.1(a) is an example of a quasi-monotone coefficient. The coeffi-
cients in Figure 6.1(b-c) are not quasi-monotone. The following lemma is proved in [22, 21].

Lemma 6.3. If α is quasi-monotone on Dil, for all 1 ≤ i ≤ J and l ∈M(i), then Assumption
C3’ holds with hidden constant independent of α.

Note that a similar result can be proved in the case of non piecewise constant coefficients
α(x), provided again that α is quasi-monotone (as defined in [22, 21] for the general case)
on each of the regions Dil.

7. Numerical results

In this section, we demonstrate the performance of the two-level overlapping Schwarz
method with coarse space constructed by solving local constrained minimization (saddle–
point) problems (constrained energy min AMGe, for short) combined with partition of unity
(motivated by Theorem 2.5 and based on the result in Theorem 5.1).

We consider two test problems with large jumps of coefficients and study the convergence
of the method by varying the size of the jump (referred to as contrast). We also vary the fine-
grid mesh size as well as the coarsening factor (ratio of the number of coarse-grid elements
to the number of fine-grid ones). The coarse elements are obtained by agglomerating fine
grid elements; so in general they are polygonal subdomains. As partition of unity, we use a
trace minimization construction as described, for example, in [29] (or [33]).

The test problem we consider is the variational problem (2.1) on the unit square Ω ⊂ IR2,
Ω = (0, 1) × (0, 1), with f(x) = −1. We restate this problem here for convenience: Find
u∗ ∈ H1

0 (Ω), such that

(7.1)

∫

Ω

α(x) ∇u∗ · ∇v = −
∫

Ω

v(x) for all v ∈ H1
0 (Ω).

We consider two examples which have different coefficient distribution. In both cases the
coefficient a(x) is piecewise constant and takes two values, 1 and 10c, where c (referred to
as contrast) varies between −12 and 12. The coefficient distributions for Example 1 and
Example 2 are shown in Figure 7.1.

Example 1. The first test problem corresponds to a subdomain that resembles the number
“four” (see Figure 7.1a). Outside this subdomain the value of the coefficient is one. We use
a locally refined mesh to resolve the coefficient only on the finest mesh. The coefficient α(x)
for this example, as well as the finest grid (resolving the jumps) are shown in Figure 7.2.
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(a) Example 1: α(x) distribution
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(b) Example 2: α(x) distribution

Figure 7.1: Domain and coefficient values for Example 1 and Example 2.
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Figure 7.2: Discontinuous coefficient distribution and locally adapted mesh resolving it in
Example 1.
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Example 2. In the second problem the two constant values of the coefficient α(x) alternate
within the domain, as shown in Figure 7.1b. The fine mesh for this problem is obtained
by locally adapting an initially unstructured mesh that does not resolve the discontinuous
coefficient in such a way that the final mesh does. This is illustrated in Figure 7.3.

Figure 7.3: Fine grid resolved discontinuous coefficient in Example 2.

Convergence rates. In our tests we use the two–level Schwarz method as a stationary iter-
ation method. A two level multiplicative Schwarz iteration is performed in the following way:
(1) forward Schwarz loop over the subdomains; (2) coarse–grid correction; and (3) backward
Schwarz loop over the subdomains. The coarse problem is solved by a preconditioned conju-
gate gradient method (up to a relative accuracy of 10−6). The saddle point problems arising
in the construction of the coarse space are solved by a direct method. The iterations are
stopped when the ℓ2–norm of the preconditioned residual is reduced by a factor of 10−6. The
subdomains in the Schwarz method are formed by putting together (in one subdomain) all
agglomerated elements that have a common vertex. The agglomerated elements are obtained
using the algorithm described in [29] (or more recently in [30]), and for Example 1 one of
the coarse grids is shown in Figure 7.4. We point out here that according to the theory
developed in the previous sections, the coarse grid agglomerated elements need not (and do
not) resolve the coefficient jumps. This is clearly seen in Figure 7.4.

The performance of the two-level Schwarz method is summarized in Table 7.1 and Table 7.2
for the two examples, respectively. Although, strictly speaking, our theoretical results do not
apply to the case of algebraically constructed coarse elements and partitions of unity using
element agglomeration and energy minimization, the two-level Schwarz method, as seen in
both tables (Table 7.1 and Table 7.2), exhibits convergence factors (̺) that are insensitive
to variations in the contrast as well as the grid size. The convergence factors are also fairly
insensitive with respect to the coarsening factor; compare Table 7.2 and Table 7.3.



20 ROBERT SCHEICHL, PANAYOT S. VASSILEVSKI, AND LUDMIL T. ZIKATANOV

Figure 7.4: Coarse agglomerated elements for mesh of Example 1.

c # coarse grid dofs nit ̺
-12 3,621 68 0.74
-9 3,638 66 0.75
-6 3,671 54 0.74
-3 3,724 53 0.75
0 3,762 43 0.72
3 3,723 52 0.75
6 3,690 56 0.75
9 3,626 65 0.75

12 3,574 73 0.74

Table 7.1: Convergence factor (̺) for the two–level Schwarz method with constrained energy
min AMGe coarse space for Example 1. The fine (triangular) mesh is fixed with 192, 892
elements and 97, 004 dofs. The jump in the PDE coefficient is 10c. The coarse mesh is chosen

so that the coarsening factor ( # fine-grid elements
# coarse-grid elements) is approximately 36.
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# fine grid dofs # fine grid elements # coarse dofs # coarse elements nit ̺
55,823 111,160 8,808 3,041 59 0.72
12,1072 241,420 18,477 6,464 55 0.70
144,785 288,448 18,944 6,985 89 0.79
184,669 367,776 21,164 9,103 70 0.73
271,681 542,160 38,521 14,330 84 0.78
325,345 649,008 41,149 16,388 77 0.77

Table 7.2: Convergence factor (̺) for the two–level Schwarz method with constrained en-
ergy min AMGe coarse space for Example 2. Fixed jump of 1012 in the PDE coefficient
and variable fine-grid mesh. The coarse mesh is chosen so that the coarsening factor

( # fine-grid elements
# coarse-grid elements) is approximately 36.

# fine grid dofs # fine grid elements # coarse dofs # coarse elements nit ̺
58,536 116,428 12,832 8,244 55 0.71
118,196 235,868 17,292 13,475 56 0.70
144,785 288,488 29,730 19,826 56 0.70
272,140 543,195 42,805 36,108 64 0.71

Table 7.3: Convergence factor (̺) for the two–level Schwarz method with constrained en-
ergy min AMGe coarse space for Example 2. Fixed jump of 1012 in the PDE coefficient
and variable fine-grid mesh. The coarse mesh is chosen so that the coarsening factor

( # fine-grid elements
# coarse-grid elements) is approximately 16.

In summary, all experiments agree with our theoretical results given in the previous sec-
tions.
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1. G. Acosta and R. G. Durán, An optimal Poincaré inequality in L1 for convex domains, Proceedings of
the American Mathematical Society 132 (2003), no. 1, 195–202.
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5. M. Brezina, C. Heberton, J. Mandel, and P. Vaněk, An iterative method with convergence rate chosen
a priori, Tech. Report 140, University of Colorado Denver, CCM, University of Colorado Denver, April
1999, Earlier version presented at 1998 Copper Mountain Conference on Iterative Methods, April 1998.

6. T. F. Chan and T. P. Mathew, Domain decomposition algorithms, Acta Numerica, 1994, Cambridge
Univ. Press, Cambridge, 1994, pp. 61–143. MR 1288096 (95f:65214)



22 ROBERT SCHEICHL, PANAYOT S. VASSILEVSKI, AND LUDMIL T. ZIKATANOV

7. T. Chartier, R. D. Falgout, V. E. Henson, J. Jones, T. Manteuffel, S. McCormick, J. Ruge, and P. S.
Vassilevski, Spectral AMGe (ρAMGe), SIAM J. Sci. Comput. 25 (2003), no. 1, 1–26. MR 2047193
(2004m:65036)

8. J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, Problems in Analysis, Princeton
Univ. Press, 1970, pp. 195–199.

9. D. Cho, J. Xu, and L. T. Zikatanov, New estimates for the rate of convergence of the method of sub
space corrections, Numerical Mathematics. Theory, Methods and Applications 1 (2008), no. 1, 44–56.
MR 2401666 (2009b:65077)

10. C.-C. Chu, I. G. Graham, and T.-Y. Hou, A new multiscale finite element method for high-contrast
elliptic interface problems, Math. Comp. 79 (2010), no. 272, 1915–1955. MR 2684351

11. M. Dryja, M. V. Sarkis, and O. B. Widlund, Multilevel Schwarz methods for elliptic problems with
discontinuous coefficients in three dimensions, Numer. Math. 72 (1996), no. 3, 313–348. MR 1367653
(96h:65134)

12. O. Dubois, I. D. Mishev, and L. T. Zikatanov, Energy minimizing bases for efficient multiscale modeling
and linear solvers in reservoir simulation, Proceedings of the SPE Reservoir Simulation Symposium
(The Woodlands, Texas), Society of Petrolium Engineers (SPE), 2-4, February 2009.

13. Y. Efendiev, J. Galvis, and P. S. Vassilevski, Spectral element agglomerate algebraic multigrid methods
for elliptic problems with high contrast coefficients, Domain Decomposition Methods in Science and
Engineering XIX (Berlin) (Y. Huang, R. Kornhuber, O. Widlund, and J. Xu, eds.), Lecture Notes in
Computational Science and Engineering, vol. 78, Springer, 2011, pp. 407–414.

14. J. Galvis and Y. Efendiev, Domain decomposition preconditioners for multiscale flows in high-contrast
media, Multiscale Model. Simul. 8 (2010), no. 4, 1461–1483. MR 2718268

15. , Domain decomposition preconditioners for multiscale flows in high contrast media: Reduced
dimension coarse spaces, Multiscale Modeling & Simulation 8 (2010), no. 5, 1621–1644.

16. I. G. Graham and M. J. Hagger, Unstructured additive Schwarz-conjugate gradient method for elliptic
problems with highly discontinuous coefficients, SIAM J. Sci. Comput. 20 (1999), no. 6, 2041–2066
(electronic). MR 1703306 (2000h:65179)

17. I. G. Graham, P. O. Lechner, and R. Scheichl, Domain decomposition for multiscale PDEs, Numer.
Math. 106 (2007), no. 4, 589–626. MR 2317926 (2008f:65242)

18. T. V. Kolev, J. E. Pasciak, and P. S. Vassilevski, H(curl) auxiliary mesh preconditioning, Numer. Linear
Algebra Appl. 15 (2008), no. 5, 455–471. MR 2423515 (2009c:65284)

19. V. G. Maz’ya, Classes of regions and imbedding theorems for function spaces, Dokl. Akad. Nauk SSSR
133 (1960), 527–530, (Russian). English translation: Soviet Math. Dokl. 1 (1960), 882–885.

20. L. E. Payne and H. F. Weinberger, An optimal Poincaré inequality for convex domains, Arch. Rational
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